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ABSTRACT
Partitioned global address space (PGAS) programming models have
been identified as one of the few viable approaches for dealing
with emerging many-core systems. These models tend to generate
many small messages, which requires specific support from the net-
work interface hardware to enable efficient execution. In the past,
Cray included E-registers on the Cray T3E to support the SHMEM
API; however, with the advent of multi-core processors, the bal-
ance of computation to communication capabilities has shifted to-
ward computation. This paper explores the message rates that are
achievable with multi-core processors and simplified PGAS sup-
port on a more conventional network interface. For message rate
tests, we find that simple network interface hardware is more than
sufficient. We also find that even typical data distributions, such as
cyclic or block-cyclic, do not need specialized hardware support.
Finally, we assess the impact of such support on the well known
RandomAccess benchmark.

1. INTRODUCTION
In striving for higher productivity, numerous partitioned global ad-
dress space (PGAS) languages have been proposed, including Co-
Array Fortran (CAF) [24], Unified Parallel C (UPC) [9], and the
languages recently proposed for the DARPA High Productivity Com-
puting Systems (HPCS) program[10, 7, 31]. Each purports to fa-
cilitate the transition into the trans-petascale regime by leveraging
PGAS capabilities. Indeed, some argue that the only viable ap-
proach to programming the next generation of machines is to lever-
age a global address space model. However, to actually deliver
improvements in productivity, these languages must deliver high
performance at reasonable levels of effort.
Unfortunately, the PGAS model tends to express communications
in extremely fine-grained accesses. Every access of remote mem-
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ory can easily (and frequently does) become an 8-byte network
transaction. This type of network usage differs dramatically from
what is typically seen in MPI applications. Current high-end net-
work interfaces tend to incur 1 to 2 microseconds of latency[21,
27, 28] for an MPI message. Partially because of the two-sided se-
mantics of MPI, they are able to sustain only one to three million
MPI messages per second (per core) in the best case scenarios[27,
28, 21]1. This modest level of performance — particularly the high
latency and high overhead — would force programmers using a
PGAS model to program as if they were using MPI. While it is
likely that achieving the highest performance will always require
some attention to data layout and remote access patterns, if appli-
cations are forced to use only large block transfers, then PGAS
languages will fail to deliver an improvement in productivity.
Of course, many systems have attempted to bridge this gap in per-
formance for the PGAS model. Notably, Cray, Inc. has typically
designed products that directly support PGAS semantics. For ex-
ample, Cray’s vector processors (e.g. the Cray X1[11]) tend to
provide a large native address space and a sufficient number of out-
standing loads and stores to make remote accesses efficient. In
contrast, the highly successful Cray T3E[1] leveraged commod-
ity microprocessors augmented with a novel mechanism called E-
registers[30] to provide global address space capabilities. Indeed,
the T3E is the archetype of modern expectations for PGAS sup-
port on a commodity microprocessor platform. One of the key fea-
tures of the T3E was thecentrifugeoperation combined with the
E-register accesses[30]. The centrifuge swizzles bits from an array
that is mapped into linear virtual addresses on each core to gener-
ate the appropriate PE and offset to access the physical array that is
distributed across the machine. The T3E provided robust support
for the common data distributions leveraged by the PGAS model;
however, much has changed since the T3E was designed more than
a decade ago.
Perhaps the most dramatic change over this time has been the con-
tinuing shift in the balance between computation and communi-
cation. While one of the initial concerns with the T3E was the
ability to issue enough transactions to keep the network busy [30],
the number of operations a processor can perform in the time re-
quired to transfer a network word has constantly increased. Sim-
ilarly, although network bandwidth has grown more slowly than
processor performance, the rate of increase in network bandwidth
has far outstripped the rate of improvement in network latency. Fi-
nally, the system interface environment has changed dramatically

1The older InfiniPath adapter from Qlogic and the recently an-
nounced ConnectX adapter from Mellanox claim to sustain 11 mil-
lion and 25 million messages per second, respectively, when using
8 cores



as well. Modern systems are shifting to point-to-point processor
interconnects (e.g. HyperTransport), and processors have added
write-combining buffers for I/O space that allow the intelligent ag-
gregation of transfers that cross into the network interface. This sig-
nificant change in the landscape since E-registers were designed2

has provided motivation for exploring what could be achieved with
minimal hardware support. Thus, this paper examines the impact of
using minimal hardware support in the context of modern systems.
We find that while a single processor core has insufficient issue
bandwidth to drive a network at full rate, two or four cores is all
that is required to saturate the network (depending on the work-
load). Indeed, cyclic and block cyclic data distributions can achieve
over 80% of the network’s theoretical limit (when accounting for
overheads) with only two cores driving the network. Even with the
additional work per access required by the HPCC RandomAccess
benchmark[19], two cores are still able to achieve 63% of the net-
work limit while four cores can saturate the network.
The next section describes related work on hardware support for
PGAS as well as relevant network programming interfaces. Sec-
tion 3 discusses a minimal set of hardware, and our methodology
is detailed in Section4. Microbenchmark results and analysis are
provided in Sections5 and 6, respectively. Section7 presents re-
sults for the HPCC RandomAccess benchmark. Conclusions are
presented in Section8 followed by future work in Section9.

2. RELATED WORK
Efficient network hardware support for small messages has been an
active area of research for a number of years. While our research is
focused on providing hardware support specifically for the PGAS
model on multi-core distributed memory systems — more specifi-
cally efficient one-sided network transfers — there is a large body
of previous work on techniques to optimize small message data
movement for parallel and distributed systems.
Many different approaches have been taken to address the perfor-
mance and overhead issues associated with doing small network
transfers in distributed memory systems. A popular approach has
been to extend processor- and bus-level interconnect technologies
to support communication over greater distances. This method was
used for technologies like the Scalable Coherent Interface (SCI) [15],
which was an extension of the FutureBus technology developed
in the late 1980’s. This technique has had several different incar-
nations over the last twenty-plus years, and has most recently ap-
peared in Advanced Switching for PCI Express [20]. A distinguish-
ing characteristic of these approaches is support for memory co-
herence across the entire system. Most of these technologies were
developed to provide coherency for a global address space rather
than the more limited coherency model that is required to support
PGAS implementations. The aforementioned Cray T3E E-registers
and the network interface for the Intel TeraFLOPS machine [8] are
examples of hardware specifically designed to support PGAS-style
coherency on a large distributed memory parallel machine.
Traditional attached high-performance network technologies have
also been enhanced to better support small one-sided network trans-
fers. Most current high-performance networks, such as Myrinet [3],
Quadrics [25], and InfiniBand [16] support programmed I/O trans-
fers where the processor writes directly to the network interface to
initiate the transfer of small messages. This method avoids the sig-
nificant overhead of programming a DMA engine to do the transfer.
The Quadrics QSNet-II hardware also has a Short Transaction En-
gine (STEN) [29], which takes a sequence of writes into network
interface memory and formats them directly into network transac-

2Not to mention the fact that E-registers are patented

tions, bypassing the processor on the network interface. This ap-
proach is greatly enhanced by processor buses that employ write-
combining to allow for the transfer to the network interface to occur
in a single bus transaction. Recently, the InfiniPath [13] network
has demonstrated significant increases in latency performance and
message rate for small messages. It is able to achieve these rates by
using programmed I/O to stream messages into network interface
memory where custom logic formats messages and then streams
them out to the network. This approach of bypassing DMA en-
gines on the send-side and avoiding the overheads of an embedded
processor on the network interface has demonstrated several bene-
fits for small message performance.
While our work here does not specifically target application pro-
gramming interfaces for PGAS-style network transfers, it is impor-
tant to understand how the capabilities and semantics of the un-
derlying network are exposed to the application level, either di-
rectly through library routines or indirectly through a compiler.
The majority of the network programming interfaces for current
high-performance attached networks are designed to optimize bulk
transfers for two-sided messaging architectures like MPI.
One of the original programming interfaces aimed at efficient han-
dling short messages for distributed multiprocessor systems was
Virtual Memory Mapped Communication [2], which mapped an
area of remote memory into a process’ local address space. This
technique allowed for loads and stores to this mapped region to
be translated into remote operations by the network interface. The
Cray SHMEM [12] API was developed specifically to support appli-
cation level use of E-registers. This API has also been supported
on several shared memory platforms and some commodity net-
works, most notably Quadrics. The Aggregate Remote Memory
Copy Interface (ARMCI) [22] was designed specifically to support
Global Arrays [23], a PGAS model library. It has many features in
common with Cray SHMEM, including support for non-contiguous
data transfers and remote atomic memory operations. The GAS-
Net [4] programming interface was designed to be a compiler tar-
get for the Berkeley UPC compiler and runtime system. It was
designed to support efficient small message transfers and is heavily
influenced by previous work on Active Messages [34]. We have
chosen to implement a subset of the Cray SHMEM API for our
experiments in this study.

3. MINIMAL HARDWARE
The proposed hardware is designed to interact with systems in a
modern context. Specifically, it assumes that the network inter-
face connects to the processor through a high-performance, pack-
etized I/O interface like HyperTransport (HT)3. Furthermore, it is
assumed that the processor will have a series of write-combining
buffers to aggregate accesses over that interface. A basic block di-
agram is shown in Figure1.

3.1 Transmit
Figure1 illustrates a 3D router, an interface to the host processor,
and four blocks to implement support for PGAS. For the transmit
side, commands are pushed down into a 4 KB command queue,
with linear addressing to leverage the write-combining resources
on the host processor. Each process (core, in this case) needs a
private command queue mapped into its address space to allow
user-level access.Free spaceupdates are pushed back into the user

3For this particular design study, PCI-Express would be equivalent;
however, it is likely that numerous other aspects of PGAS support,
such as remote atomic operations, would be better served by tighter
integration with the processor
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Figure 2: Minimal translation hardware

address space for every 512 bytes consumed. This is required to
minimize the update traffic across the HT interface, while prevent-
ing the bandwidth throttling that can be induced by a buffer that is
too small or updates that are too infrequent.
The contents of a minimal command are shown in Table1. The
operation field is set to be large enough to support a range of op-
erations. The element size maps to the SHMEM operation sizes
(1 to 128 bytes), but maps well to the general needs of PGAS lan-
guages. The node identifier (NID) is sized to support a system up
to 64K nodes and the process identifier (PID) is mapped to the size
of a Linux PID. The stride is smaller than the stride required by
SHMEM, but larger strides can be readily supported by multiple
native commands. On the transmit side, the translation from virtual
(PE) to physical (NID/PID) is currently algorithmic, on the host4.
Commands written to the NIC are translated to packets for the net-
work. The NIC adds multiple trusted fields5 to the message for in-
spection at the remote side. An 8-byte header is added in addition to
16 bytes containing the source NID, source PID, user identification
(UID), and job identification (JID). While not strictly necessary,
these fields are typically added in real networks to provide authen-
tication at the remote node for a wide range of protocols. The data
transferred over the network is shown in Table2 and includes a
total of 36 bytes of overhead on the data.

3.2 Receive
At the receive side, authentication would occur based on the trusted
fields in the packet. The commands for the target would then be
extracted from the packet, with the destination virtual address and
PID being used for address translation. In a system like the Cray
XT3, the Catamount O/S[17] uses a linear virtual to physical map-
ping that would enable a simple translation to a physical address.
Because the simulator does not model an operating system, this ap-
proach was used for this work. Thus, the minimal set of hardware
required is a table indexed by PID that selects an associative struc-
ture that is used to map the virtual address into an application seg-
ment (e.g. stack, heap, etc.), which provides a base address. This
is illustrated in Figure2, where the second structure indexed has a
start and length that are compared to determine what region the in-
coming request’s virtual address falls in. This region then provides
a base address that is used for translation.

4A real system would include a translation mechanism (either on
the host or on the NIC), but that is independent of the other PGAS
support mechanisms.
5The trusted fields would be initialized on the NIC through a sys-
tem call at application initialization.

A Linux based O/S would require significantly more complexity in
the address mapping scheme; however, this is independent of the
support for PGAS and is an issue for all NICs. In either case, a
translated address is used to generate an HT request that places the
data directly into application memory.

3.3 Completion Notification
Another required aspect of support for PGAS languages is com-
pletion notification. The transmitter must be capable of determin-
ing when all outstanding messages have completed to support op-
erations such asshmem_quiet(). The hardware at the receiver
generates an acknowledgment so that the transmitter can determine
when all outstanding requests have completed. The transmitter’s
NIC keeps a simple count that is incremented when a message is
sent and decremented when an acknowledgment is received so that
ashmem_quiet() is simply a blocking call to the NIC.

3.4 Interaction with MPI
Nothing about the proposed hardware is mutually exclusive to an
efficient MPI implementation. Indeed, the command structure on
the NIC can be shared and demultiplexed at the NIC. Similarly de-
multiplexing would be needed at the receiver, but such demultiplex-
ing is a single cycle, easily pipelined operation.

3.5 Trade-offs
This proposal pushes support from hardware to the processor and
makes three trade-offs relative to the E-register approach[30]. Our
hypothesis is that these trade-offs simplify the network interface
implementation without significantly impacting performance. The
first trade-off is increased processing time per network transaction.
In this case, we can consider dual- and quad-core Opterons and rec-
ognize that the typicalcentrifugeoperation [30] ranges from four
to ten integer instructions for a multi-gigahertz processor with mul-
tiple cores capable of issuing three or more instructions per cycle.
The second trade-off is the need to write additional data across the
I/O bus to provide the information to the NIC that is implied in
the address accessed with a command in the E-register case. This,
however, is a false comparison in a processor model that is depen-
dent on write-combining for sustaining high performance. A single
core in our proposed approach writes 24 bytes (command and data)
per 8-byte message with multiple message commands being aggre-
gated into a single 64-byte HyperTransport (HT) packet containing
an overhead of 8 bytes. The E-register approach, because it im-
plies some information in theaddressaccessed on the NIC, would
frequently make accesses that interfered with the write-combining
hardware and would cause each HT packet to contain only one
16-byte transfer (target address and data) for an 8-byte message.
Thus, where our proposed approach would average 27 bytes (in-
cluding HT overhead) per 8-byte message, the E-register approach
would average 24 bytes (including HT overhead) — a relatively
small 12.5% savings.
The third trade-off is to place returns fromget operations in host
memory instead of E-register structures on the NIC. Given a system
like the Cray XT3, which can incur a round trip time of more than
5 microseconds across an unloaded machine just due to routing de-
lays, over 2048 E-registers would be needed to keep the network
pipe full for get-based traffic. This also implies that the application
would have 2048 concurrent get operations available. This points
to a future where get-based traffic is less and less usable for fine-
grained accesses, resulting in the need to move the responses to
host memory. It does, however, add an additional 4 bytes to initiate
get commands between the processor and the NIC.



Table 1: Commands for PGAS support on network interface
Field Bits Comment
Operation 5 Puts, Gets, Atomics
Element Size 4 Size of data element in bytes
Num. Elements 16 Number of elements to transfer
Dest. NID 16 Up to 64K nodes in system
Dest. PID 16 Support Linux process ID
Dest. Address 38 Up to 256 GB per node
Dest. Stride 16 Larger strides use multiple commands

Total (for Put Commands) 111 16 bytes

Local Address 38 For Gets only

Total (for Get Commands) 149 20 bytes

Table 2: Message contents
Field Bytes Comment
Header 8 Matches Cray XT3 network
hline Command 16 All of the command is needed at the target
Source NID 2 Trusted source fields used for authentication
Source PID 2
Source UID 4
Source Job ID 4
Data Variable

Table 3: Processor Parameters
Parameter CPU
Clock Frequency 2 GHz
Fetch Queue 4
Issue Width 8
Commit Width 4
RUU Size 64
Integer Units 4
Memory Ports 3
L1 (Size/Assoc.) 64KB/2
L2 1MB/16
ISA PowerPC
Main Memory Bandwidth 6.4 GB/s peak
Main Memory latency 140-160 cyc.
System I/O HyperTransport
I/O Bandwidth 2.3 GB/s/dir sustainable
I/O Latency 250 ns

4. METHODOLOGY
This work leveraged the Structural Simulation Toolkit (SST) devel-
oped by Sandia National Laboratories and the University of Notre
Dame[33]. SST provides a hybrid discrete event and cycle-driven
simulation infrastructure that enables the coarse-grained integra-
tion of components modeled at a very detailed level. SST inte-
grates the SimpleScalar[6] processor simulation to provide detailed
processor models. SST enhances the processor model with a more
robust memory model, including the ability to memory map I/O de-
vices. In addition, SST models a HyperTransport I/O interface and
has been used to model the Cray XT3 supercomputer — including
a robust model of the network interface[33].
We replaced the XT3 network interface with a model to study hard-
ware support for SHMEM. Tables3 and4 present the salient prop-
erties of the processor and network models. The peak sustainable
rate of the HyperTransport (HT) interface on the XT3 is approxi-
mately 2.3 GB/s per direction, before accounting for the “header
flit” of each HyperTransport packet. The one-way latency across

Table 4: Network Parameters
Topology 3D Torus
Clock Frequency 500 MHz
Link Bandwidth (Peak) 4 GB/s/dir
Router Latency 50 ns
Link Overhead 15%
Router Arbitration Round-Robin
Router VCs 4

the HyperTransport interface is approximately 250 ns, which is re-
markably high, but does match the actual hardware performance.
The processor runs at 2 GHz and the newtork interface at 500 MHz.
Both match the points validated in previous work [33].
The router-to-router links have a peak of 4.8 GB/s per direction;
however, to simplify the implementation, the router model assumes
that the links are synchronous to the router core (8 bytes wide, 500
MHz) and accounts for the difference in peak bandwidth by ad-
justing the overhead. Whereas the XT3 links have a 24% proto-
col overhead, this model only adds 15% overhead to the individual
links. Finally, the virtual channel architecture (two virtual channel
classes each having two virtual channels) is modeled along with the
round-robin arbitration variant.
Each of the benchmarks was implemented using a limited version
of the Cray SHMEM API. Only the put and barrier functions were
implemented for this study6. As an example, the function:

shmem_int_put(int *target, int *source, size_t len, int pe)

copieslen integers from the addresssource on the local PE7 to
the addresstarget on the remote PE designatedpe. Each of the
put functions pushes the required 16-byte command to the network
interface followed by the data from the source to the network in-
terface. On the target PE, the network interface initiates transac-

6Since the Cray SHMEM get functions are all blocking, they are
generally less useful in modern systems.
7The SHMEM PE (processing element) is analogous to the MPI
rank.



/∗ Perform loop i t e r a t i o n s ∗ /
2 f o r ( i = 0 ; i < loop ; i ++ ) {

i n t d e s t = 0 ;
4 /∗ Send window_s ize messages t o each node∗ /

f o r ( j = 0 ; j < window_size ; j ++ ) {
6 d e s t = num_cores ( ) + coreNum ;

/∗ Loop over remote nodes∗ /
8 f o r ( k = 0 ; k < numNids ; k + + ) {

/∗ t a r g e t n id i s loop v a r i a b l e ∗ /
10 i n t n id = k ;

/∗ PE i s match ing core on remote n id∗ /
12 i n t pe = n id ∗ num_cores ( ) + coreNum ;

f a r _ r b u f = ca lcRBuf ( pe ) ;
14 shmem_int_put ( f a r _ r b u f , sbuf , s i z e > >2 , pe ) ;

}
16 }

/∗ Wait f o r c o m p l e t i o n ∗ /
18 w a i t _ f o r _ r e s p o n s e ( ) ;

}
(a)

/∗ Perform loop i t e r a t i o n s ∗ /
2 f o r ( i = 0 ; i < loop ; i ++ ) {

i n t d e s t = 0 ;
4 /∗ Send window_s ize messages t o each node∗ /

f o r ( j = 0 ; j < window_size ; j ++ ) {
6 sbu f [ ( s i z e > >2)−1] = j +1;

d e s t = num_cores ( ) + coreNum ;
8 /∗ l oop over a l l nodes ∗ /

f o r ( k = 0 ; k < numNids ; k + + ) {
10 /∗ n id from an i n d i r e c t i o n v e c t o r ∗ /

i n t n id = d e s t L i s t [ j∗numNids+k ] ;
12 /∗ Targe t PE i s match ing core on remote node∗ /

i n t pe = n id ∗ num_cores ( ) + coreNum ;
14 /∗ C a l c u l a t e t a r g e t remote add ress∗ /

f a r _ r b u f = ca lcRBuf ( pe ) ;
16 shmem_int_put ( f a r _ r b u f , sbuf , s i z e > >2 , pe ) ;

}
18 }

/∗ Wait f o r c o m p l e t i o n ∗ /
20 w a i t _ f o r _ r e s p o n s e ( ) ;

}
(b)

Figure 3: Benchmark code for One-to-N (a) cyclic and (b) indirect
distributions

tions across the HT interface to place the data at the target location.
The shmem_barrier_all() routine was implemented using the
simulator’s built-in barrier routine with an added overhead of 2µs,
which is a conservative estimate of the performance of a real barrier
on a system designed to support a PGAS model.

5. MICROBENCHMARKS
Many of the issues regarding hardware support for the PGAS model
can be readily explored using microbenchmarks. Unlike MPI, where
it is extremely difficult to make microbenchmarks representative of
application behavior[32], PGAS-style messaging is relatively sim-
ple. There are no message matching semantics (with the associated
lists to traverse), no message ordering semantics, and, thus, rela-
tively few ways to “cheat” with a benchmark. This section presents
several variations on benchmarks to assess the performance of our
simplified PGAS hardware support.

5.1 Description
The first three microbenchmarks used in this study mirror their
counterparts for MPI. A ping-pong latency benchmarkputsa single
item of a given size to a remote node. Upon arrival, the remote node
initiates a put operation to the sending node. The time from the
initiation of the first message to the receipt of the response is mea-
sured, and the one-way latency is assumed to be half of this value.
Similarly, the streaming message benchmark closely matches the
Ohio State University (OSU) streaming message benchmark for
MPI [18] and the bidirectional bandwidth benchmark is simply an
analogue of the ping-pong latency benchmark using simultaneous
bidirectional transfers.
Three variants of the OSU streaming bandwidth benchmark were
also created to mimic accesses to various data distributions within

/∗ T o t a l da ta t o send ∗ /
2 i n t l o o p S i z e = ( window_size∗ numNodes ∗ s i z e ) − s i z e ;

/∗ Perform loop i t e r a t i o n s ∗ /
4 f o r ( i = 0 ; i < loop ; i ++ ) {

/∗ Loop over a l l da ta − i n c r e m e n t by da ta s e n t∗ /
6 f o r ( j = 0 ; j < l o o p S i z e ; j + = s i z e ) {

/∗ E x t r a c t n id from loop v a r i a b l e ∗ /
8 i n t des tN id = ( j > > n i d S h i f t ) & nodeMask ;

i n t d e s t P e = des tN id∗ numCores + coreNum ;
10 /∗ t a r g e t add ress a l s o based on loop v a r i a b l e∗ /

i n t ∗ t a rgAddr = ( i n t ∗ ) ( t a r g B u f + j ) ;
12 shmem_int_put ( ta rgAddr , s rcBuf , s i z e > >2 , d e s t P e ) ;

}
14

w a i t _ f o r _ r e s p o n s e ( ) ;
16 }

*

Figure 4: Benchmark code for One-to-N block-cyclic distribution

a typical PGAS model. In Figure3(a), the benchmark mimics a
cyclic data distribution. For a given size of transfer, the bench-
mark performs several loop iterations that consist of sendingwin-

dow_size items to each ofnumNids nodes, with the loop over the
NIDs (equivalent to socket number) being the inner loop. Note that
the destination PE is chosen as the PE corresponding to the remote
core on a given socket that matches the sending core on the local
socket. Thus, on a dual- or quad-core node, there are two or four
PEs sending data.
The streaming test using an indirection vector in Figure3(b) very
closely matches Figure3(a). The only change is that the target PE
is selected by using the loop variables to index into an indirection
vector. Finally, to mimic a block-cyclic distribution, it is necessary
to somewhat change the loop structure, as shown in Figure4. The
benchmark loops over all data to transfer and extracts the target PE
and the target address from the loop variable.

5.2 Results
We begin with simple ping-pong latency and bandwidth in Fig-
ure 5(a). Relative to MPI on the same simulated platform[33],
latency is reduced by a factor of five; however, this is not a fair
comparison, since we have switched from using DMA on every
message to using programmed I/O. Relative to a comparable in-
terconnect, such as InfiniPath, using programmed I/O and HT [5,
13], latency is still reduced by almost a factor of two, due to the
elimination of various MPI overheads.
While the latency was reduced dramatically, it is not as low as
might be expected. For these experiments, we used the model of
HT built to simulate the Sandia Red Storm (Cray XT3) system[33].
The latency of the HT implementation accounts for nearly 70%
(500 ns) of the total latency, with the crossing of two routers con-
tributing another 14% (100 ns). Figure5(b) considers the impact
of reducing the HT latency, and indicates that, in the extreme case
where the implementation on the NIC is as good as the coherent
implementation found in an Opteron (25 ns for one crossing), the
one-way latency can be reduced to 300 ns.
In turn, Figure6 presents the bidirectional bandwidth achievable
with the simplified PGAS hardware. The primary point illustrated
here is that a set of processor cores can readily contribute enough
data to keep the network pipe full. An interesting note, however,
is that a single core can only fill half of the network pipe. This is
an artifact of the memory copy rate. The processor modeled does
not support SIMD instructions. Like the Opteron processor it ap-
proximates, if wide (SIMD) loads are not used for data movement,
it cannot achieve more than approximately 2 GB/s of memory copy
bandwidth. In discussions with processor vendors, it has become
clear that this is a trend of the future: a single core will not be able
to sustain the full memory bandwidth available on a socket — even
for a memory copy. Transferring data in the PGAS model is the
equivalent of a memory copy where the target is simply the local
network interface.
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Figure 6: Bidirectional bandwidth
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Figure 7: Unidirectional streaming bandwidth
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Figure 8: One-to-N unidirectional streaming bandwidth

Figure7 presents the small message streaming bandwidth between
two nodes. Without the overheads imposed by MPI, the oft-touted
N

1
2 number is a mere 16 bytes. For the peak bandwidths, we again

see the limitations of a single core without wide (SIMD) loads and
stores for data movement; however, when streaming messages be-
tween a pair of nodes, the computations are simple enough that
two cores are sufficient to compute all of the remote addresses and
do the work necessary to fill the network link. Indeed, two cores
sustain 90% of the rate achievable by four cores, and modern quad-
core systems are still limited to approximately the same I/O inter-
face (HT in this case) rates as are seen on dual-core systems.
While a streaming test provides some insight into the performance
of the PGAS hardware support, applications are not typically go-
ing to stream data to a single node with much regularity. The
next most complicated operation that an application can perform
is to write data to an array that is striped across many (in this case
all) nodes. Figure8 presents the performance when messages are
striped across all nodes in the system8. The data in Figure8 rep-
resents the performance that could be expected when writing lin-
early to an array of objects of sizeM where the array is distributed
cyclically across all of the nodes. Here, the work per transfer is
increased so that two cores are only able to generate requests fast
enough to sustain 80% of the full rate, while four cores can still
easily saturate the network.
A second common data distribution in the PGAS model is a block-
cyclic distribution. A block-cyclic distribution places several con-
tiguous items from a single array on a node; thus, the calculation of

832 sockets for the case presented here
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Figure 9: One-to-N block unidirectional streaming bandwidth
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Figure 10: One-to-N random unidirectional streaming bandwidth

the destination PE occurs less often. The block streaming test re-
sults in Figure9 indicate that two cores can sustain 87% of the rate
that four cores can sustain, and four cores can saturate the network.
The third access pattern considered is vector indirection. Iterative
sparse solvers, for example, often access remote data through an in-
direction vector. This adds a local memory access for every remote
access and changes the work balance somewhat; however, accesses
to the indirection vector have perfect spatial locality9. Thus, using
the indirection vector is equivalent in performance to striped ac-
cesses (see Figure10). That is, two cores can keep the interconnect
80% saturated, while four cores can saturate it.

6. ANALYSIS
Given the hardware design in Section3 and the performance seen
in Section5, it is worthwhile to consider the constraints on peak
transfer rates. The processors’ injection rate, the I/O bandwidth,
and the network link bandwidth all place upper bounds on the level
of performance that can be achieved. In the Cray XT3 design, HT
provides 3.2 GB/s of peak bandwidth per direction; however, the
actual sustained bandwidth is 2.3 GB/s. When the 8-byte overhead
per 64-byte data transfer is accounted for, this becomes just over 2
GB/s. Thus, the peak data rate for a message ofN bytes using the
design from Section3 is bounded by:

HyperTransportBW≤ N
N+16

× 64
72
×2.3GB/s (1)

9Applications typically access the indirection vector with linear
stride-1 accesses, which cause random appearing remote accesses
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Figure 11: Comparison of actual to theoretical peak

where there is 16 bytes of overhead for a given command and 8
bytes of overhead on 64-byte HyperTransport packets.
The router-to-router links also use 64-byte packets with 8 bytes of
overhead on each one. In addition, the message contains 28 bytes
of overhead and the links themselves add 5 bytes of overhead to ev-
ery 16 bytes to provide link-level flow control and retransmission.
Fortunately, the network link provides 4.8 GB/s of bandwidth per
direction yielding a network bandwidth bounded by:

NetBW≤ N
N+28

× 64
72
× 16

21
×4.8GB/s (2)

The maximum possible bandwidth achievable with HT is given in
Equation3. Here we assume that each command only needs to add
an 8-byte address to each transfer and that the commands plus data
leverage write-combining to the maximum extent possible.

MaxPotentialHyperTransportBW≤ N
N+8

× 64
72
×2.3GB/s (3)

The three performance limits are compared to the actual streaming
bandwidth using four cores10 in Figure11. The constraints of the
network links and the constraints of our proposed hardware support
are virtually identical for 4- or 8-byte transfers. Even at 16 bytes,
minimizing the HT overhead only adds about 10% to the perfor-
mance as the network links become the primary constraint. Since
8-byte (double precision floating-point) and 16-byte (complex dou-
ble precision floating-point) transfers are the “typical” data item
sizes, it is unclear that this is a sufficient advantage to make more
complicated hardware desirable.
A second viewpoint on the analysis is to consider the message rate
and its relationship to the performance of the processor and I/O in-
terface. The potential message rate for HT and the network link is
related to the size of the message (with overhead adding a multi-
plier) and the bandwidth:

HyperTransportMessageRate≤ 2.3GB/s

(N+16)× 72
64

(4)

NetMessageRate≤ 4.8GB/s

(N+28)× 72
64×

21
16

(5)

At the same time, messages certainly cannot be transferred faster

10All of the streaming variants achieved approximately equivalent
peak performance at four cores.
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Figure 12: Comparison of actual to theoretical peak message rate
for (a) single- and (b) dual-core systems

than the processor can issue them. Issuing a message through a
library like SHMEM incurs a certain amount of overhead. For
example, the SHMEM library will frequently lead to a function
call. Within that function, it is necessary to parse the arguments
and handle the options. For example, the length argument of a
shmem_int_put() can commonly involve an unrolled loop to per-
form the transfer. The message rate that a given processor socket
running at 2 GHz can inject is also governed by:

SocketMessageRate≤ cores× 2GigaCycles/s
Ncycles/msg

(6)

Figures12 and13 compare the actual sustained message rate with
limits imposed by the network and processor. For the processor
comparison, constant overheads ofN cycles, the number of cy-
cles required to inject a message beyond the data transfer time, are
shown for multiple interesting values ofN. In addition, for each 4
bytes of data, an additional cycle is added to account for the extra
store instruction on the 32-bit architecture modeled. In the single-
and dual-core scenarios, it is clear that messages require approxi-
mately 50 cycles/message (see the 4- and 8-byte message cases).
In the quad-core case, the bandwidth begins to saturate — even at
8-byte messages. Four-byte messages similarly saturate the bus be-
cause accesses to the command queue have to be 8-byte aligned.
Thus, 4-byte messages require just as much I/O bandwidth as 8-
byte messages.
Another interesting note from Figures12 and13 is the cross-over
point for the various message overheads. For single-core proces-
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Figure 13: Comparison of actual to theoretical peak message rate
for quad-core systems

sors, only 20 cycles of overhead can be allowed to achieve full
message rate on 4- or 8-byte messages; however, even 100 cycles
of overhead is acceptable for 128-byte messages. With quad-core
processors, even 100 cycles of overhead per message is acceptable
as the I/O interface saturates first.

7. RANDOM ACCESS PERFORMANCE
The HPC Challenge (HPCC) RandomAccess benchmark[19], also
known as GUPS (GigaUpdates Per Second), was designed to test
the performance of small, randomly distributed memory accesses.
While numerous “optimizations” of the benchmark have been per-
formed over time[26, 14], remaining in the spirit of the benchmark
requires using small messages to PEs that are randomly distributed
over the machine.
Figure14 shows the core loop from our implementation of HPCC
RandomAccess using the Cray SHMEM API[12]. For each ran-
dom update generated, the local PE sends that update to the appro-
priate remote PE. The update arrives in a per-process buffer. After
all updates have been generated and transmitted, the code enters a
barrier to insure that all others have completed their update gen-
eration. After the barrier, each process scans the local buffers for
updates that have arrived11. A second barrier ensures that all pro-
cesses have completed their local updates before beginning the next
iteration. Note that to simplify the code, all updates go to the net-
work. This is not a particular performance limitation as the code
scales such that very few updates are local. The table on each node
is 128 MB, which is sufficient to insure that caching has a mini-
mal effect on the performance. Finally, due to the limitations of
the simulator, we limit the number of iterations and the number of
updates to below what is allowed by the actual HPCC RandomAc-
cess benchmark. Both limits actually put this implementation at a
disadvantage relative to other implementations.
Figure15 presents the performance achieved using this SHMEM
variant of the HPCC RandomAccess benchmark. The x-axis is the
number ofsockets, rather than the total number of PEs, since the
network interface is a per-socket resource. As the results in Sec-
tion 5 would suggest, two cores per socket perform twice as well
as one core per socket. Four cores per socket have a consistent
25% advantage over two cores per socket. This indicates that even
though the amount of work per update has increased somewhat,
dual-core processors can still drive 80% of the network bandwidth
and quad-core processors can saturate the network.

11The random number generator is such that the update isnever
zero.



f o r ( k = 0 ; k < 1 0 0 ; k ++ ) {
2 f o r ( i = 0 ; i < 5 1 2 ; i ++ ) {

/∗ Genera te random update∗ /
4 ran = ( ran < < 1 ) ^

( ran < ZERO64B ? POLY : ZERO64B ) ;
6

/∗ E x t r a c t PE ∗ /
8 PE = ( mask & ran ) > > l o g l o c a l ;

10 /∗ Send t o remote b u f f e r
∗ main ta i ned per p r o c e s s o r

12 ∗ /
shmem_int_put (& u p d a t e s [me ] [ coun t [ PE ] ] ,

14 &ran , 2 , PE ) ;

16 ++ coun t [ PE ] ;
}

18
/∗ Clear remote upda te coun t∗ /

20 f o r ( i = 0 ; i < np rocs ; i ++)
coun t [ i ] = 0 ;

22
/∗ wa i t f o r eve ryone t o f i n i s h ∗ /

24 s h m e m _ b a r r i e r _ a l l ( ) ;

26 /∗ Loop over per p r o c e s s o r b u f f e r s∗ /
f o r ( i = 0 ; i < np rocs ; i ++ ) {

28 j =0;
whi le ( datum = u p d a t e s [ i ] [ j + + ] ) {

30 index = datum & nloca lm1 ;
t a b l e [ i ndex ] ^ = datum ;

32 u p d a t e s [ i ] [ j ] = 0 ;
}

34 }

36 /∗ wa i t f o r eve ryone t o f i n i s h ∗ /
s h m e m _ b a r r i e r _ a l l ( ) ;

38 }
Figure 14: RandomAccess code
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Figure 15: RandomAccess performance

8. CONCLUSIONS
This paper explores whether the computational capabilities pro-
vided by modern, multiple issue, out-of-order, multi-core CPUs is
sufficient to perform the address computation functionality to sup-
port PGAS style accesses. Specifically, we hypothesized that the
processors could compute remote addresses for various address-
ing styles, including cyclic, block cyclic, and indirect remote ad-
dressing without direct support from hardware constructs such as
E-registers[30]. We test this hypothesis through the use of targeted
microbenchmarks. The results indicate that four cores is always
sufficient to fully saturate the network and that two cores are fre-
quently sufficient to saturate the network — even for small message
sizes. In addition, we explore the HPCC RandomAccess bench-
mark and find that four cores are sufficient even in cases where the
processor has somewhat more work to do — in this case generating
random numbers and updating tables.
We do find, however, that generating a message requires 50 cycles
of overhead for a 2 GHz processor (25 ns of processor time) on av-
erage. This is more expensive than strictly necessary for a “remote
store”; however, when considering the latency of a remote store rel-
ative to the remarkable amount of processing available on a node,
this seems like a reasonable trade-off.

9. FUTURE WORK
While high message rate, low overhead communications are a crit-
ical component for supporting the PGAS model well, there are nu-
merous other network interface features that are desirable for sup-
porting the full semantics of the PGAS model. For example, we
plan to explore support for remote atomic operations as well as
lightweight synchronization primitives. Another area for explo-
ration will be the translation from virtual (PE-based) to physical
(network ID-based) addressing when transitioning from a SHMEM
call to the physical network.
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